Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 154: 113551, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988424

RESUMO

Endoplasmic reticulum stress (ERS) has been identified to be an important factor leading to chondrocyte apoptosis in osteoarthritis (OA). Previous studies have confirmed that Achyranthes bidentata polysaccharides (ABPS) can inhibit chondrocyte apoptosis; however, the mechanism of action of ABPS on chondrocyte ERS remains unclear. Thus in this study, we aim to investigate whether ABPS could inhibit OA-associated chondrocyte apoptosis by regulating ERS, especially by observing the relationship between the lncRNA NEAT1 and miR-377-3p, to explore further the protective mechanism of ABPS in OA. In vitro and in vivo experiments showed that ABPS inhibited chondrocyte ERS by regulating the expression of lncRNA NEAT1 and miR-377-3p. Moreover, both lncRNA NEAT1 silencing and miR-377-3p inhibition could attenuate the therapeutic effect of ABPS on ERS. Dual-luciferase results indicated that miR-377-3p targets the lncRNA NEAT1 gene in mouse chondrocytes. Therefore, we concluded that ABPS could inhibit thapsigargin (TG)-induced chondrocyte ERS through the lncRNA NEAT1/miR-377-3p axis.


Assuntos
Achyranthes , MicroRNAs , Osteoartrite , RNA Longo não Codificante , Animais , Apoptose , Condrócitos/metabolismo , Estresse do Retículo Endoplasmático , Camundongos , MicroRNAs/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , RNA Longo não Codificante/metabolismo
2.
Data Brief ; 28: 105023, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909121

RESUMO

The Tougu Xiaotong capsule (TXC) is a traditional herbal compound used to treat osteoarthritis (OA) in China. We performed fingerprint analysis with HPLC for the quality control of TXC. Its composition was identified by the comparison of the spectrogram and chromatographic peak of retention time with a reference substance. TXC was found to contain paeoniflorin, isofraxidin, ferulic acid, and rosmarinic acid. The chondrocytes were identified by immunohistochemical staining using collagen II. Chondrocytes that were positive for collagen II were stained brown in the cytoplasm. The toll-like receptor 4 (TLR4) was expressed on the chondrocyte membrane, which was observed using immunofluorescence microscopy. The nuclei were stained blue by 4',6-diamidino-2-phenylindole (DAPI) and TLR4 was stained green. These were observed using laser scanning confocal microscopy. The successful establishment of LPS-exposed chondrocytes was confirmed using enzyme-linked immunosorbent assay (ELISA). Lipopolysaccharide (LPS) administration significantly reduced the levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), and a maximum effect was observed at 8 h. We believe that these methods will be useful in future investigations of OA. This data article is related to the research article "Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation: In vivo and in vitro verification" [1].

3.
J Ethnopharmacol ; 249: 112390, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760158

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tougu Xiaotong capsules (TXC) are an herbal compound commonly used to treat osteoarthritis (OA) in China. AIM OF THE STUDY: We attempted to verify TXC's therapeutic effects and mechanisms related to the p38 mitogen-activated protein kinase (MAPK) pathway in vivo and in vitro. MATERIALS AND METHODS: TXC's therapeutic effects were assessed by observing cartilage degeneration and inflammatory factors in a modified Hulth's model (in vivo) and a lipopolysaccharides (LPS)-exposed cellular model (in vitro). The expression of biomarkers related to p38 MAPK pathway-mediated inflammation was also investigated. RESULTS: TXC treatment reversed cartilage degeneration related biomarkers (ADAMTS 4, ADAMTS 5, Col I, Col V, MMP 3, MMP 9, and MMP 13) and inflammation factors (IL-1ß, TNF-α, and IL-6) in both the animal and cellular OA models. Expression of p-p38 MAPK was downregulated following TXC administration, and changes to microRNAs in the cellular models were recovered. These results indicated that the p38 MAPK pathway-related mechanism may involve therapeutic effects of TXC. CONCLUSIONS: This study verified TXC's efficacy to treat OA in vivo and in vitro and suggests that p38 MAPK pathway-related mechanisms may be involved in TXC's therapeutic effects.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Biomarcadores/metabolismo , Cápsulas , Regulação para Baixo/efeitos dos fármacos , Inflamação/patologia , Masculino , MicroRNAs/genética , Osteoartrite/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
Indian J Orthop ; 53(4): 518-524, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31303667

RESUMO

PURPOSE: To evaluate the therapeutic effects of combined atlas fracture with type II (C1-type II) odontoid fractures and to outline a management strategy for it. PATIENTS AND METHODS: Twenty three patients with C1-type II odontoid fractures were treated according to our management strategy. Nonoperative external immobilization in the form of cervical collar and halo vest was used in 13 patients with stable atlantoaxial joint. Surgical treatment was early performed in 10 patients whose fractures with traumatic transverse atlantal ligament disruption or atlantoaxial instability. The visual analog scale (VAS), neck disability index (NDI) scale, and American Spinal Injury Association (ASIA) scale at each stage of followup were then collected and compared. RESULTS: Compared to pretreatment, the VAS score, NDI score, and ASIA scale were improved among both groups at followup evaluation after treatment. However, in the nonsurgical group, one patient (1/11) developed nonunion which required surgical treatment in later stage and one patient (1/13) with halo vest immobilization had happened pin site infection. Two patients of the surgical group (2/11) had appeared minor complications: occipital cervical pain in one case and cerebrospinal fluid leakage in one case. Two patients (2/23) were excluded from nonsurgical treatment group because their followup period was less than 12 months. Twenty one patients were followed up regularly with an average of 23.9 months (range 15-45 months). CONCLUSIONS: We outlined our concluding management principle for the treatment of C1-type II odontoid fractures based on the nature of C1 fracture and atlantoaxial stability. The treatment principle can obtain satisfactory results for the management of C1-type II odontoid fractures.

5.
J Ethnopharmacol ; 229: 215-221, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30342192

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tougu Xiaotong capsule (TXC) is a Chinese herbal compound that belongs to a range of Chinese herbs functioning as 'kidney invigorators and liver softeners' commonly used to treat osteoarthritis (OA) in China. AIMS OF THE STUDY: The aims of the present study are to confirm the therapeutic effects of TXC in an OA cell model and to determine the mechanisms involved in such effects. MATERIALS AND METHODS: A tunicamycin (Tm)-exposed OA cell model was employed, and the effects of TXC were confirmed by observing cell viability and apoptosis. The reduced cell viability and increased apoptosis caused by Tm were improved by TXC, confirming the cellular protection of TXC. We then investigated the expression of biomarkers related to the endoplasmic reticulum (ER) stress pathway, including microRNA-211 (miR-211), a regulator in the ER stress pathway. RESULTS: Downregulation of X-box binding protein 1 (Xbp-1) and miR-211 expression following Tm administration was reversed by TXC. Moreover, the upregulation by Tm of the expression levels of binding immunoglobulin protein, Xbp-1, activating transcription factor 4, C/EBP-homologous protein, Caspase-9 and Caspase-3 was downregulated by TXC. These results indicated that the ER stress pathway-related mechanism may play a potential role in the therapeutic effects of TXC. CONCLUSIONS: The present study provides evidence of the therapeutic effects of TXC at the cell level and describes a cellular model for establishing the mechanisms of the effects of TXC used in the treatment of OA.


Assuntos
Condrócitos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Osteoartrite/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Cápsulas , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Osteoartrite/induzido quimicamente , Ratos Sprague-Dawley , Tunicamicina
6.
Mol Med Rep ; 16(5): 5807-5814, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28849229

RESUMO

The Ras­Raf­mitogen­activated protein kinase kinase (MEK)1/2­extracellular signal­regulated kinase (ERK)1/2 signaling pathway contributes to the release of chondral matrix­degrading enzymes and accelerates the degradation of articular cartilage. Electroacupuncture (EA) treatment has been widely used for the treatment of osteoarthritis (OA); however, the mechanism underlying the effects of EA on OA remains unclear. Therefore, the present study evaluated the anti­inflammatory effects and potential underlying mechanisms of EA serum (EAS) on tumor necrosis factor (TNF)­α­mediated chondrocyte inflammation. A total of 30 Sprague Dawley rats were randomly divided into three groups: The blank group; experimental group I, which received 15 min of EA treatment; and experimental group II, which received 30 min of EA treatment. Subsequently, serum samples were obtained. Chondrocytes were isolated from the knee cartilage of Sprague Dawley rats, and were identified using collagen type II immunohistochemistry. TNF­α­treated chondrocytes were used as a cell model, and subsequently the cells were treated with EAS from each group for various durations. The results demonstrated that EAS treatment significantly promoted the viability and inhibited the apoptosis of TNF­α­treated chondrocytes. In addition, interleukin (IL)­1ß concentration was significantly increased in the model group compared with in the control group, whereas EAS significantly reduced IL­1ß concentration in TNF­α­treated chondrocytes. Furthermore, the protein expression levels of Ras, Raf and MEK1/2 were reduced in the EAS groups compared with in the model group. EAS also significantly inhibited the phosphorylation of ERK1/2, and the expression of downstream regulators matrix metalloproteinase (MMP)­3 and MMP­13. In conclusion, these results indicated that EAS may inhibit TNF­α­mediated chondrocyte inflammation via the Ras­Raf­MEK1/2­ERK1/2 signaling pathway in vitro, thus suggesting that EAS may be considered a potential therapeutic strategy for the treatment of OA.


Assuntos
Eletroacupuntura/métodos , Inflamação/terapia , Osteoartrite/terapia , Animais , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/genética , Joelho/patologia , Sistema de Sinalização das MAP Quinases/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Osteoartrite/genética , Osteoartrite/patologia , Ratos , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo , Quinases raf/genética , Proteínas ras/genética
7.
Mol Med Rep ; 15(5): 3027-3034, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28358416

RESUMO

Cibotium barometz polysaccharides (CBPS) are one of the most important bioactive components extracted from the Cibotium barometz plant, which belongs to the Dicksoniaceae family. It has been widely used for the treatment of orthopedic diseases in traditional Chinese medicine. However, the molecular mechanisms behind the therapeutic effects of CBPS remain to be clarified. In the present study, the concentration of CBPS was detected by phenol-vitriol colorimetry. Furthermore, the effects stimulated by CBPS on the viability and G1/S cell cycle transition in primary chondrocytes from Sprague-Dawley rats were investigated. A cell viability assay demonstrated that chondrocyte proliferation may be enhanced by CBPS in a dose­ and time­dependent manner. The mechanism underlying the promotion of chondrocyte cell cycle was suggested to involve the stimulation of G1 to S phase transition. To further confirm the results, reverse transcription­quantitative polymerase chain reaction and western blot analyses were used to detect the expression of mRNA and protein levels of cyclin D1, cyclin­dependent kinase 4 and retinoblastoma protein. The results suggested that CBPS may stimulate chondrocyte proliferation via promoting G1/S cell cycle transition. Since osteoarthritis is characterized by deficient proliferation in chondrocytes, the present study indicates that CBPS may potentially serve as a novel method for the treatment of osteoarthritis.


Assuntos
Condrócitos/efeitos dos fármacos , Polissacarídeos/farmacologia , Traqueófitas/química , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fase G1/efeitos dos fármacos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína do Retinoblastoma/metabolismo , Fase S/efeitos dos fármacos , Regulação para Cima
8.
Molecules ; 21(12)2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27973422

RESUMO

The aim of the work was to determine the interactions of a set of anti-cancer compounds with bovine serum albumin (BSA) using a ProteOn XPR36 array biosensor and molecular docking studies. The results revealed that a total of six anti-cancer compounds: gallic acid, doxorubicin, acteoside, salvianolic acid B, echinacoside, and vincristine were able to reversibly bind to the immobilized BSA. The sensorgrams of these six compounds were globally fit to a Langmuir 1:1 interaction model for binding kinetics analysis. There were significant differences in their affinity for BSA, with doxorubicin, the weakest binding compound having 1000-fold less affinity than salvianolic acid B, the strongest binding compound. However, compounds with a similar KD often exhibited markedly different kinetics due to the differences in ka and kd. Molecular docking experiments demonstrated that acteoside was partially located within sub-domain IIA of BSA, whereas gallic acid bound to BSA deep within its sub-domain IIIA. In addition, the interactions between these compounds and BSA were dominated by hydrophobic forces and hydrogen bonds. Understanding the detailed information of these anti-cancer compounds can provide important insights into optimizing the interactions and activity of potential compounds during drug development.


Assuntos
Antineoplásicos/química , Técnicas Biossensoriais/métodos , Simulação de Acoplamento Molecular/métodos , Análise Serial de Proteínas/métodos , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície/métodos , Animais , Benzofuranos/química , Sítios de Ligação , Bovinos , Doxorrubicina/química , Ácido Gálico/química , Glucosídeos/química , Glicosídeos/química , Fenóis/química , Ligação Proteica/fisiologia , Vincristina/química
9.
Exp Ther Med ; 12(1): 87-94, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347021

RESUMO

Huatan Tongluo Fang (HTTLF) is a traditional herbal formula that can resolve phlegm and dredge collaterals. HTTLF has also been used to treat rheumatoid arthritis (RA); however, the mechanism underlying the therapeutic effects of HTTLF on RA has not been clearly elucidated at the molecular level. In the present study, an integrated model of system pharmacology containing chemical space analysis, potential active compound prediction and compound-target-disease network was constructed to investigate the molecular mechanisms of HTTLF. The compounds from HTTLF dispersed well in the chemical space. Most of the compounds from HTTLF had similar chemical spaces to drug/drug-like compounds associated with RA, according to the MDL Drug Data Report. A total of 127 potentially active compounds and 17 targets of RA were identified. Among them, 50 compounds interacted with ≥2 targets, while 77 compounds interacted with only one target. In addition, 17 targets were associated with 82 diseases that belonged to 26 categories. These results indicate that HTTLF has diverse chemical spaces and polypharmacology with regards to the treatment of RA. In addition, HTTLF demonstrated therapeutic potential against diverse diseases other than RA, including osteoarthritis, atherosclerosis and brain cancer. This study provides a novel platform for understanding how HTTLF treats RA; this is beneficial for explaining the diverse functions of HTTLF with regards to RA, and may help develop novel compounds with desirable therapeutic targets to treat RA.

10.
Int J Mol Med ; 36(5): 1311-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26329269

RESUMO

Our previous study showed that Duhuo Jisheng decoction (DHJSD) inhibited chondrocyte apoptosis by the mitochondria-dependent signaling pathway. Endoplasmic reticulum (ER) stress is upstream of the mitochondria-dependent signaling pathway and has been shown to promote chondrocyte apoptosis that occurs in osteoarthritis (OA). The present study aimed to evaluate whether DHJSD inhibits the chondrocyte apoptosis by regulating ER stress. DHJSD enhanced the viability of tunicamycin (TM)­exposed chondrocytes, a model of ER stress-induced apoptosis, in a dose­ and time­dependent manner, as shown by MTT assay. The present results showed that DHJSD and sodium 4-phenylbutyrate (PBA), an ER stress inhibitor, reduced TM­induced chondrocyte apoptosis by 4',6-diamidino­2-phenylindole staining. To gain insight into the mechanisms of DHJSD that are responsible for enhancing the viability and inhibiting TM­induced chondrocyte apoptosis, the associated mRNA expressions and protein levels were detected by reverse transcription­polymerase chain reaction (RT­PCR) and western blot analysis, respectively. The results showed that the expression levels of Xbp1, Xbp1s and Bcl­2 were increased, and the expression levels of Bip, Atf4, Chop, Bax, caspase­9 and ­3 were decreased in the TM­exposed chondrocytes treated with DHJSD or PBA compared with that in the TM­exposed chondrocytes. To identify the possible mechanisms, the expression of miR­34a was examined by the TaqMan microRNA assay, and was downregulated in the TM­exposed chondrocytes treated with DHJSD or PBA compared with that in the TM-exposed chondrocytes. DHJSD inhibits ER stress in chondrocytes induced by exposure to TM by downregulating miR­34a, suggesting that DHJSD may be a potential therapeutic agent for OA.


Assuntos
Condrócitos/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , MicroRNAs/genética , Tunicamicina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Regulação para Baixo/genética , Estresse do Retículo Endoplasmático/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Fenilbutiratos/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
11.
Mol Med Rep ; 12(2): 1769-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25891262

RESUMO

Diesun Miaofang (DSMF) is a traditional herbal formula, which has been reported to activate blood, remove stasis, promote qi circulation and relieve pain. DSMF holds a great promise for the treatment of traumatic injury in an integrative and holistic manner. However, its underlying mechanisms remain to be elucidated. In the present study, a systems pharmacology model, which integrated cluster ligands, human intestinal absorption and aqueous solution prediction, chemical space mapping, molecular docking and network pharmacology techniques were used. The compounds from DSMF were diverse in the clusters and chemical space. The majority of the compounds exhibited drug-like properties. A total of 59 compounds were identified to interact with 16 potential targets. In the herb-compound-target network, the majority of compounds acted on only one target; however, a small number of compounds acted on a large number of targets, up to a maximum of 12. The comparison of key topological properties in compound-target networks associated with the above efficacy intuitively demonstrated that potential active compounds possessed diverse functions. These results successfully explained the polypharmacological mechanism underlying the efficiency of DSMF for the treatment of traumatic injury as well as provided insight into potential novel therapeutic strategies for traumatic injury from herbal medicine.


Assuntos
Medicamentos de Ervas Chinesas/química , Análise por Conglomerados , Bases de Dados de Compostos Químicos , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Medicina Tradicional Chinesa , Solubilidade , Cicatrização/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-25705239

RESUMO

The molecular mechanisms of TNF-α-induced apoptosis of chondrocyte and the role of Ca(2+) mediating the effects of MW on TNF-α-induced apoptosis of chondrocytes remained unclear. In this study, we investigated the molecular mechanism underlying inhibiting TNF-α-induced chondrocytes apoptosis of MW. MTT assay, DAPI, and flow cytometry demonstrated that MW significantly increased cell activity and inhibited chromatin condensation accompanying the loss of plasma membrane asymmetry and the collapse of mitochondrial membrane potential. Our results also indicated that MW reduced the elevation of [Ca(2+)] i in chondrocytes by LSCM. Moreover, MW suppressed the protein levels of calpain, Bax, cytochrome c, and caspase-3, while the expressions of Bcl-2, collagen II, and aggrecan were increased. Our evidences indicated that MW treatment inhibited the apoptosis of chondrocytes through depression of [Ca(2+)] i . It also inhibited calpain activation, which mediated Bax cleavage and cytochrome c release and initiated the apoptotic execution phase. In addition, MW treatment increased the expression of collagen II and aggrecan of chondrocytes.

13.
Exp Ther Med ; 9(3): 839-844, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25667638

RESUMO

Bushen Zhuangjin Decoction (BZD), a well-known formulation in Traditional Chinese Medicine, has been widely used for the treatment of osteoarthritis (OA). Due to the poor intrinsic repair capacity of chondrocytes, promoting the proliferation of chondrocytes is an efficient treatment to delay the progression of cartilage degradation. The present study, therefore, focused on the effect of BZD on chondrocyte proliferation, exploring the mechanism of BZD on the inhibition of cartilage degradation. Chondrocytes isolated from the knee articular cartilage of Sprague Dawley rats were cultured and identified by type II collagen immunohistochemistry. It was found that BZD promoted chondrocyte viability in a dose- and time-dependent manner. To investigate if BZD promoted the chondrocyte viability by stimulating the cell cycle progression a flow cytometer was used, and the results showed that the percentage proportion of G0/G1 cells was significantly lower, and the percentage proportion of S cells was significantly higher, in treated cells compared with that in untreated cells. To gain insight into the mechanism underlying the effect of BZD on the cell cycle progression, the mRNA and protein expression of cyclin D1, cyclin-dependent kinase 4 (CDK4), CDK6 and p21 was measured by reverse transcription-polymerase chain reaction and western blotting, respectively. The mRNA and protein expression of cyclin D1, CDK4 and CDK6 in the BZD-treated chondrocytes was significantly upregulated, while the mRNA and protein expression of p21 was significantly downregulated, compared with that in the untreated chondrocytes. These results suggested that BZD promoted chondrocyte proliferation by accelerating G1/S transition, indicating that BZD is a potential therapeutic agent for the treatment of OA.

14.
Mol Med Rep ; 10(5): 2525-34, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25189115

RESUMO

Duhuo Jisheng Decoction (DHJSD) is a traditional Chinese herbal medicine that has multiple uses, including as a treatment for osteoarthritis (OA). However, the molecular mechanisms underlying the therapeutic effects of DHJSD on OA remain unknown. In the present study, a serum pharmacological method was applied to investigate the effects of DHJSD on the proliferation of chondrocytes treated with interleukin­1ß (IL­1ß) in vitro. This is a cell model commonly used to reproduce the mechanisms involved in degenerative arthropathies, including OA. The most effective intervention conditions of DHJSD serum were examined by MTT assay. The degenerative chondrocyte model was established by IL­1ß­culture for 24 h, and was verified by optical microscopy and immunohistochemical analyses. Following the successful establishment of the degenerative chondrocyte model, the chondrocytes were subsequently randomly divided into two groups: The blank serum group and the DHJSD treatment group. Subsequent to treatment with the corresponding serum, cell proliferation was detected by MTT assay and DNA staining followed by FACS analysis, and the mRNA and protein expression levels of cyclin D1, cyclin­dependent kinase 4 (CDK4), retinoblastoma tumor suppressor protein (Rb) and p16 were measured by reverse transcription polymerase chain reaction and western blotting, respectively. The results indicated that the most effective condition for the promotion of chondrocyte proliferation was 10% concentration of DHJSD 2­h serum, and the degenerative chondrocyte model was successfully reproduced by IL­1ß­treatment for 24 h. The mRNA and protein expression levels of cyclin D1, CDK4 and Rb in the DHJSD serum­treated cells were significantly increased compared with those in the blank serum group, whereas p16 expression was significantly downregulated. These results indicate that treatment of cells with DHJSD­containing serum is able to promote IL­1ß­induced chondrocyte proliferation by promoting G1/S phase transition via modulating the expressions of cyclin D1, CDK4, Rb and p16, which contribute to the clinical efficacy of DHJSD in OA.


Assuntos
Proliferação de Células/efeitos dos fármacos , Condrócitos/fisiologia , Medicamentos de Ervas Chinesas/farmacologia , Interleucina-1beta/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sobrevivência Celular , Células Cultivadas , Condrócitos/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
15.
Exp Ther Med ; 7(6): 1777-1783, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24926384

RESUMO

Xiao Chai Hu Tang (XCHT), a traditional herbal formula, is widely administered as a cancer treatment. However, the underlying molecular mechanisms of its anticancer effects are not fully understood. In the present study, a computational pharmacological model that combined chemical space mapping, molecular docking and network analysis was employed to predict which chemical compounds in XCHT are potential inhibitors of cancer-associated targets, and to establish a compound-target (C-T) network and compound-compound (C-C) association network. The identified compounds from XCHT demonstrated diversity in chemical space. Furthermore, they occupied regions of chemical space that were the same, or close to, those occupied by drug or drug-like compounds that are associated with cancer, according to the Therapeutic Targets Database. The analysis of the molecular docking and the C-T network demonstrated that the potential inhibitors possessed the properties of promiscuous drugs and combination therapies. The C-C network was classified into four clusters and the different clusters contained various multi-compound combinations that acted on different targets. The study indicated that XCHT has a polypharmacological role in treating cancer and the potential inhibitory components of XCHT require further investigation as potential therapeutic strategies for cancer patients.

16.
Int J Mol Med ; 34(2): 545-52, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899049

RESUMO

We have previously reported that Tougu Xiaotong capsule (TXC) inhibits tidemark replication and cartilage degradation by regulating chondrocyte autophagy in vivo. Autophagy, a cell protective mechanism for maintaining cellular homeostasis, has been shown to be a constitutively active and protective process for chondrocyte survival. However, it remains unclear whether TXC promotes chondrocyte autophagy by regulating the autophagy-related (Atg)12/microtubule-associated protein 1 light chain 3 (LC3) conjugation systems. Thus, in the present study, we investigated the effects of TXC on primary chondrocytes treated with cobalt chloride (CoCl2). We found that CoCl2 induced a decrease in chondrocyte viability and the autophagosome formation of chondrocytes, indicating that CoCl2 induced autophagic death in a dose- and time-dependent manner. To determine the effects of TXC on CoCl2-exposed chondrocytes, we assessed cell viability by MTT assay. Our results revealed that TXC enhanced the viability of CoCl2-exposed chondrocytes. To gain insight into the mechanisms responsible for the enhancing effects of TXC on CoCl2-exposed chondrocytes, the expression of Atg genes was assessed in chondrocytes exposed to CoCl2 and treated with or without TXC. The results revealed that the expression of beclin 1, Atg3, Atg5, Atg7, Atg10, Atg12 and LC3 II/LC3 I in the chondrocytes treated with TXC increased, compared to that in the untreated chondrocytes. In addition, ultrastructural analysis indicated that treated chondrocytes contained more autophagosomes than the untreated cells, suggesting that TXC increased the formation of autophagosomes in the chondrocytes to clear the CoCl2-induced autophagic death. Therefore, these data suggest that TXC is a potential therapeutic agent for the reduction of cartilage degradation that occurs in osteoarthritis.


Assuntos
Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Proteínas Associadas aos Microtúbulos/biossíntese , Osteoartrite/tratamento farmacológico , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/biossíntese , Apoptose/efeitos dos fármacos , Proteína 12 Relacionada à Autofagia , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Linhagem Celular , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Cobalto/toxicidade , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Fagossomos/efeitos dos fármacos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
17.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 34(4): 480-5, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-24812909

RESUMO

OBJECTIVE: To compare the effect of reinforcing Shen method (RSM) and activating blood method (ABM) in treating osteoarthritis (OA) at the molecular level. METHODS: The physical and chemical characteristics of components from respective recipes of RSM and ABM, and network features of component-target interaction network were analyzed by computer simulation methods including chemical space, molecular docking, and biological network, etc. RESULTS: The chemical components of RSM and ABM were scarcely scattered with larger overlapping. Among established networks, the distribution of network features was partially similar in RSM and ABM. The average target number correlated with each component was 1.86 in RSM and 2.11 in ABM respectively. Each average target number was respectively correlated with 4.46 compounds and 3.93 compounds, reflecting multi-component and multi-target actions. CONCLUSION: Computer simulation could intuitively trace out similarities and differences of two different methods and their interaction with targets, which revealed that the compatibility of RSM and ABM could have broader protein targets and potential synergism at the molecular level.


Assuntos
Simulação por Computador , Medicamentos de Ervas Chinesas/administração & dosagem , Osteoartrite/tratamento farmacológico , Fitoterapia/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos
18.
Mol Med Rep ; 9(3): 857-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24452288

RESUMO

Huoxue Huayu (HXHY) has been widely used in traditional Chinese medicine (TCM) as a key therapeutic principle for osteoarthritis (OA), and related herbs have been widely prescribed to treat OA in the clinic. The aims of the present study were to explore a multi-target therapy for OA using 10 common HXHY herbs and to investigate their potential applications for treatment of other diseases. A novel computational simulation approach that integrates chemical structure, ligand clusters, chemical space and drug­likeness evaluations, as well as docking and network analysis, was used to investigate the properties and effects of the herbs. The compounds contained in the studied HXHY herbs were divided into 10 clusters. Comparison of the chemical properties of these compounds to those of other compounds described in the DrugBank database indicated that the properties of the former are more diverse than those of the latter and that most of the HXHY-derived compounds do not violate the 'Lipinski's rule of five'. Docking analysis allowed for the identification of 39 potential bioactive compounds from HXHY herbs and 11 potential targets for these compounds. The identified targets were closely associated with 49 diseases, including neoplasms, musculoskeletal, nervous system and cardiovascular diseases. Ligand­target (L­T) and ligand­target­disease (L­T­D) networks were constructed in order to further elucidate the pharmacological effects of the herbs. Our findings suggest that a number of compounds from HXHY herbs are promising candidates for mult­target therapeutic application in OA and may exert diverse pharmacological effects, affecting additional diseases besides OA.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Osteoartrite/tratamento farmacológico , Análise por Conglomerados , Bases de Dados Factuais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Humanos , Ligantes , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
19.
Exp Ther Med ; 6(5): 1163-1168, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24223639

RESUMO

The herb pair comprising Salvia miltiorrhiza (SM) and Panax notoginseng (PN) has been used as a classical formula for cardiovascular diseases (CVDs) in China and in western countries. However, the pharmacology of SM and PN in this herb pair has not been fully elucidated. The aim of this study was to compare the mechanisms of SM and PN at the molecular level for the treatment of CVDs. We used a systems pharmacology approach, integrating ligand clustering, chemical space, docking simulation and network analysis, to investigate these two herbal medicines. The compounds in SM were attached to clusters 2, 3, 5, 6, 8 and 9, while the compounds in PN were attached to clusters 1, 2, 4, 5, 6, 7, 8 and 10. The distributions of chemical space between the compounds from SM and PN were discrete, with the existence of small portions of overlap, and the majority of the compounds did not violate 'Lipinski's rule of five'. Docking indicated that the average number of targets correlated with each compound in SM and PN were 5.0 and 3.6, respectively. The minority nodes in the SM and PN drug-target networks possessed common values of betweenness centrality, closeness centrality, topological coefficients and shortest path length. Furthermore, network analyses revealed that SM and PN exerted different modes of action between compounds and targets. These results suggest that the method of computational pharmacology is able to intuitively trace out the similarities and differences of two herbs and their interaction with targets from the molecular level, and that the combination of two herbs may extend their activities in different potential multidrug combination therapies for CVDs.

20.
Int J Mol Med ; 32(5): 1001-10, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24009074

RESUMO

Duhuo Jisheng Decoction (DHJSD), a well known traditional Chinese folk medicine, is used for eliminating stagnation, removing blood stasis, promoting blood circulation and alleviating pain; it is commonly used for the treatment of various diseases, including osteoarthritis (OA). However, the molecular mechanisms behind the therapeutic effects of OA remain unclear. In the present study, the effects of DHJSD on the morphology of articular cartilage and the G1/S cell cycle progression in chondrocytes, as well as the underlying mechanisms, were investigated. A total of 27 two­month­old male Sprague Dawley rats were randomly divided into 3 groups: the control group (no papain-induced OA; received an equivalent amount of saline only), the model group (papain-induced OA; received an equivalent amount of saline only) and the DHJSD group [papain-induced OA; received a clinical oral dose of DHJSD (9.3 g/kg/day)]. After 8 consecutive weeks of treatment, the morphological changes in articular cartilage were observed under an optical microscope and by transmission electron microscopy (TEM) and the mRNA and protein expression levels of cyclin D1, CDK4, CDK6, retinoblastoma protein (Rb) and p16 were measured by RT­PCR and immunohistochemistry, respectively. Treatment with DHJSD significantly improved the arrangement of collagen fibers in the articular cartilage, as well as its structure and reduced cell degeneration compared with the model group. The mRNA and protein expression levels of cyclin D1, CDK4, CDK6 and Rb in the DHJSD­treated group were significantly increased compared with those in the model group, whereas p16 expression was significantly downregulated. Taken together, these results indicate that DHJSD treatment promotes chondrocyte proliferation by promoting the G1/S checkpoint transition in the cell cycle and by upregulating the expression of cyclin D1, CDK4, CDK6 and Rb and downregulating the expression of p16 and this may, in part, explain its clinical efficacy in the treatment of osteoarthritis.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/ultraestrutura , Condrócitos/ultraestrutura , Ciclina D1/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Fase G1/fisiologia , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...